Efeitos Físico-Químicos da Radiação - parte1

Toda a matéria se compõe de átomos e a maioria dos átomos são estáveis. As exceções, os que têm núcleos instáveis, são chamadas de "radioativos", dos quais se conhecem pelo menos 2.500 elementos radioativos naturais e artificiais que tem meias-vidas que variam de 2 x 10-16 segundos a 7,2 x 1024 anos.

Por meia-vida, entende-se, o tempo necessário para liberar metade da quantidade de energia de um átomo instável ou radioativo.

Esta energia excedente é emitida do núcleo do átomo através de partículas. Para conseguir estabilidade, o núcleo instável muda e, no processo, emite radiação na forma de pequenas partículas e raios. O urânio é assim transformado numa sucessão de outros elementos e, por fim, torna-se o estável elemento chumbo.

Estas partículas diferem em tamanho e, portanto, na capacidade de penetração de corpos expostos a estes átomos em desequilíbrio energético e são conhecidas como partículas alfa, beta e gama. A radiação alfa (α) é formada por partículas de 2 prótons e 2 nêutrons, a radiação beta (β) e os raios catódicos são elétrons; sendo estes partículas dotadas de carga elétrica são desviáveis por campo magnético. As radiações gama (γ) e X são ondas eletromagnéticas.

Partícula Velocidade em Relação à Luz (c) Poder de Penetração Relativo Poder Relativo de Ionização
α 5 a 10% de c 1 10.000
β 40 a 95% de c 100 100
γ 100% de c 10.000 1

A composição celular é de 85% de água. A água se ioniza quando é exposta a estas partículas, formando íons. A molécula de H2O+ se dissocia quase que imediatamente (10-11 segundos) formando:

H2O+ + OH + H+

OH é uma molécula altamente instável que se oxida com outras moléculas, formando H2O2 que é um agente oxidante. O elétron se combina com uma molécula de H2O formando:

H2O + eo-1 + H2O-

H2O- se dissocia formando, H + OH-

H se combinará com O formando, H + O2 + HO2

Resumindo:

H2O + OH + H2O2 + H + HO2

A exceção de H todos os demais são agentes oxidantes. Agentes oxidantes próximos do DNA interagem quimicamente oxidando e destruindo partes da molécula, destruindo, por sua vez, os genes. Noventa por cento dos danos causados pela radiação ionizante são reparados, deixando resíduo de dez por cento de dano irreparável e acumulado.

Novamente, se uma célula é exposta à radiação, a probabilidade da radiação interagir com a molécula de DNA é muito pequena, pois estes elementos que a compõe representam uma parcela ínfima. No entanto, sendo cada célula, como no caso do corpo humano, basicamente formada por água, a probabilidade da radiação interagir com a água é muito maior, por estar em maior concentração no volume celular.

Quando a radiação interage com a água quebram-se as ligações que mantêm a molécula de água unida, produz-se fragmentos tais como hidrogênio (H) e hidroxilas (OH). Estes fragmentos podem se recombinar ou podem interagir com outros fragmentos ou íons para formar compostos, tais como água, que não prejudica a célula. No entanto, podem se combinar para formar substâncias tóxicas, tais como peróxido de hidrogênio (H2O2), que pode contribuir para a destruição da célula.

Efeitos da Radiação em Seres Vivos

As células quando expostas à radiação sofrem ação de fenômenos físicos, químicos e biológicos. A radiação causa ionização dos átomos, que afeta moléculas, que poderão afetar células, que podem afetar tecidos, que poderão afetar órgãos, que podem afetar a todo o corpo.

No entanto, tende-se a avaliar os efeitos da radiação em termos de efeitos sobre células, quando na verdade, a radiação interage somente com os átomos presente nas células e a isto se denomina ionização. Assim, os danos biológicos começam em conseqüência das interações ionizantes com os átomos formadores das células.

O corpo humano é constituído por cerca de 5 x 1012 células, muitas das quais altamente especializadas para o desempenho de determinadas funções. Quanto maior o grau de especialização, isto é, quanto mais diferenciada for a célula, mais lentamente ela se dividirá. Uma exceção significativa a essa lei geral é dada pelos linfócitos, que, embora só se dividam em condições excepcionais, são extremamente radiossensíveis.

Um organismo complexo exposto às radiações sofre determinados efeitos somáticos, que lhe são restritos e outros, genéticos, transmissíveis às gerações posteriores. Os fenômenos físicos que intervêm são ionização e excitação dos átomos. Estes são responsáveis pelo compartilhamento da energia da radiação entre as células.

Os fenômenos químicos sucedem aos físicos e provocam rupturas de ligações entre os átomos formando radicais livres num intervalo de tempo pequeno.

Os fenômenos biológicos da radiação são uma conseqüência dos fenômenos físicos e químicos. Alteram as funções específicas das células e são responsáveis pela diminuição da atividade da substância viva, por exemplo: perda das propriedades características dos músculos.

Estas constituem as primeiras reações do organismo à ação das radiações e surgem geralmente para doses relativamente baixas.

Além destas alterações funcionais os efeitos biológicos caracterizam-se também pelas variações morfológicas. Entende-se como variações morfológicas as alterações em certas funções essenciais ou a morte imediata da célula, isto é, dano na estrutura celular. É assim que as funções metabólicas podem ser modificadas ao ponto da célula perder sua capacidade de efetuar as sínteses necessárias à sua sobrevivência.

Como se proteger? Mantenha distância, exponha-se o mínimo de tempo e use blindagem para deter as radiações. E em caso de acidente? Leia as informações da Defesa Civil.

Sensibilidade da Célula à Radiação

 

Nem todas as células vivas têm a mesma sensibilidade à radiação. As células que tem mais atividade são mais sensíveis do que aquelas que não são, pois a divisão celular requer que o DNA seja corretamente reproduzido para que a nova célula possa sobreviver. Assim são, por exemplo as da pele, do revestimento intestinal ou dos órgãos hematopoiéticos. Uma interação direta da radiação pode resultar na morte ou mutação de tal célula, enquanto que em outra célula o efeito pode ter menor consequência.

Infográfico de O Globo.

Assim, as células vivas podem ser classificadas segundo suas taxas de reprodução, que também indicam sua relativa sensibilidade à radiação. Isto significa que diferentes sistemas celulares têm sensibilidades diferentes.

  • Linfócitos (glóbulos brancos) e células que produzem sangue estão em constante reprodução e são as mais sensíveis.
  • Células reprodutivas e gastrointestinais não se reproduzem tão rápido, portanto, são menos sensíveis.
  • Células nervosas e musculares são as mais lentas e, portanto, as menos sensíveis.

As células têm uma incrível capacidade de reparar danos. Por isto, nem todos os efeitos da radiação são irreversíveis. Em muitos casos, as células são capazes de reparar qualquer dano e funcionarem normalmente.

Em alguns casos, no entanto, o dano é sério demais levando uma célula à morte. Em outros casos, a célula é danificada, mas ainda assim consegue se reproduzir. As células filhas terão falta de algum componente e morrerão. Finalmente, a célula pode ser afetada de tal forma que não morre e é modificada. As células modificadas se reproduzem e perpetuam a mutação, o que poderá significar o começo de um tumor maligno.

Efeitos Biológicos

A radiação nuclear não é algo que passou a existir nos últimos 150 anos. Ela faz parte de nossa vida. A luz solar é uma fonte natural radioativa. Está na areia da praia, na louça doméstica, nos alimentos, na televisão quando está ligada. Por ano, um ser humano absorve entre 110 milirem a 150 milirem de radiação de fontes diversas.

Qualquer ser humano submetido a um exame de concentração de possíveis elementos radioativos em seu corpo, obterá um resultado de concentração de potássio radioativo, que foi acumulado pelo consumo de batata. (O cigarro apresenta chumbo e polônio radioativos.)

Em uma explosão nuclear ou em certos acidentes com fontes radioativas, as pessoas expostas recebem radiações em todo o corpo, mas, as doses absorvidas podem ser diferentes em cada tecido. Cada órgão reage de uma certa forma, apresentando tolerâncias diferenciadas em termos de exposição à radiação.

Os efeitos somáticos classificam-se em imediatos e retardados com base num limite, adotado por convenção, de 60 dias. O mais importante dos efeitos imediatos das radiações após exposição do corpo inteiro a doses relativamente elevadas é a Síndrome Aguda de Radiação (SAR). O efeito retardado de maior relevância é a cancerização radioinduzida, que só aparece vários anos após a irradiação.

O quadro clínico apresentado por um irradiado em todo o corpo depende da dose de radiação absorvida. A unidade para expressar a dose da radiação absorvida pela matéria é o Gray (Gy), definido como a quantidade de radiação absorvida, correspondente a 1 Joule por quilograma de matéria.

Doses muito elevadas, da ordem de centenas de grays, provocam a morte em poucos minutos, possivelmente em decorrência da destruição de macromoléculas e de estruturas celulares indispensáveis à manutenção de processos vitais.

Doses da ordem de 100 Gy produzem falência do sistema nervoso central, de que resultam: desorientação espaço-temporal, perda de coordenação motora, distúrbios respiratórios, convulsões, estado de coma e, finalmente, morte, que ocorre algumas horas após a exposição ou, no máximo, um ou dois dias mais tarde.

Quando a dose absorvida numa exposição de corpo inteiro é de dezenas de grays, observa-se síndrome gastrointestinal, caracterizada por náuseas, vômito, perda de apetite, diarréia intensa e apatia. Em seguida surgem desidratação, perda de peso e infecções graves. A morte ocorre poucos dias mais tarde.

Doses da ordem de alguns grays acarretam a síndrome hematopoiética, decorrente da inativação das células sanguíneas (hemácias, leucócitos e plaquetas) e, principalmente, dos tecidos responsáveis pela produção dessas células (medula).

Para doses inferiores a 10 Gy, as possibilidades de uma assistência médica eficiente são maiores.

As radiações, como diversos agentes químicos, também têm efeito teratogênico, isto é, provocam alterações significativas no desenvolvimento de mamíferos irradiados quando ainda no útero materno.

Inquestionavelmente, as radiações ionizantes são um agente mutagênico, conclusão válida para espécies animais e vegetais, com base em resultados obtidos ao longo de seis décadas de experimentação.

Na espécie humana, a detecção de tais alterações é bastante difícil. Mesmo entre os sobreviventes de Hiroshima e Nagasaki, a maior população irradiada até hoje e também a mais intensamente estudada, a ocorrência de mutações radioinduzidas não foi satisfatoriamente demonstrada.

Descobriu-se uma bactéria que tem a capacidade de ser imune aos efeitos e o mapeamento de seu código genético pode dar uma grande contribuição à medicina nuclear.

Sensibilidade Orgânica à Radiação

Fatores: Taxa de Reprodução, Suprimento de Oxigênio

A sensibilidade dos órgãos do corpo humano está relacionada ao tipo de células que os compõem. Por exemplo, se as células formadoras do sangue são as mais sensíveis devido a sua taxa de reprodução ser rápida, os órgãos formadores do sangue são os mais sensíveis à radiação. As células musculares e nervosas são relativamente mais resistentes à radiação e, portanto, os músculos e o cérebro são menos afetados.

A taxa de reprodução das células que formam um órgão não é o único critério para determinar a sensibilidade geral. A importância relativa do órgão para o bem estar do corpo também é importante.

Um exemplo de sistema celular muito sensível é um tumor maligno. A camada externa de células se reproduz rapidamente e também tem um bom suprimento de sangue e oxigênio. As células são mais sensíveis quando estão se reproduzindo e a presença de oxigênio aumenta a sensibilidade à radiação. Células com oxigênio insuficiente tendem a ser inativas, tais como as células localizadas no interior do tumor maligno.

Quando o tumor é exposto à radiação, a camada externa de células que estão se dividindo é destruída, fazendo com que o tumor diminua de tamanho. Se o tumor receber uma alta dose para destruí-lo completamente, o paciente também poderá morrer. Assim, é aplicado uma dose baixa no tumor a cada dia, possibilitando que o tecido são tenha chance de se recuperar de qualquer dano enquanto, gradualmente, diminui o tumor altamente sensível.

O embrião em desenvolvimento também é composto de células que se dividem muito rapidamente, com bom suprimento de sangue e rico em oxigênio. Assim como a sensibilidade de um tumor, um embrião sofre consequências com a exposição que diferem dramaticamente.

Sensibilidade à Radiação do Corpo Inteiro

A sensibilidade à radiação do corpo inteiro depende dos órgãos mais sensíveis, que por sua vez, depende das células mais sensíveis. Como já visto, os órgãos mais sensíveis são aqueles envolvidos com a formação do sangue e o sistema gastrointestinal.

Os efeitos biológicos no corpo inteiro dependerão de vários fatores, listados abaixo. Se uma pessoa já é suscetível a uma infecção e receber uma alta dose de radiação pode ser mais afetado por ela do que uma pessoa saudável.

São estes os fatores: dose total, tipo de célula, tipo de radiação, idade do indivíduo, estágio da divisão celular, parte do corpo exposto, estado geral da saúde, volume de tecido exposto e intervalo de tempo em que a dose é recebida.

Níveis de Exposição

Os efeitos biológicos da radiação são divididos em duas categorias. A primeira categoria consiste de exposição à altas doses de radiação em breve intervalos de tempo, produzindo efeitos agudos de curta duração. A segunda categoria é formada pela exposição à baixas doses de radiação num período de tempo mais extenso, produzindo efeitos crônicos ou de longa duração. As altas doses tendem a matar as células, enquanto as baixas doses tendem a danificar ou modificá-las. As altas doses podem matar muitas células, danificando tecidos e órgãos. Isto pode provocar uma resposta rápida do corpo, conhecida como Síndrome de Radiação Aguda. As baixas doses recebidas num longo período não causam um problema imediato. Os efeitos de baixas doses ocorrem no nível celular e os resultados podem ser observados depois de muitos anos passados.

continua na parte 2

(Publicado em: www.energiatomica.hpg.ig.com.br/Bio.html)

 

Elaborado por: Marcelo Ortiz Ficel